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1 Introduction

We are interested in constructing mimetic schemes to sim-
ulate the behavior of various models of kinetic transport.
The models that we consider are typically hyperbolic sys-
tems of partial differential equations which express the
evolution of a many-particle system as a balance of con-
vective, frictional, and driving forces. In certain asymp-
totic limits, this balance provides a reduced description
of the original model; and in these limits, it is impor-
tant that a numerical scheme has the same asymptotic
properties as the model that it is used to approximate.
Mimetic methods are used to create such schemes by en-
forcing discrete analogs of such asymptotic balances in
the discretization procedure.

The mimetic point of view is quite different from
the conventional numerical approach to hyperbolic PDE,
which emphasizes order of accuracy without much con-
sideration of asymptotic limits. It turns out that for
a given mesh spacing h and scaling parameter ε which
tends to zero in a particular asymptotic limit, a standard
scheme with spatial accuracy of order n will, in fact, be
accurate only up to O(ε−1hn) terms. Hence for a finite
mesh spacing, standard numerical schemes will lose ac-
curacy as ε → 0. This effect is most noticeable for low
order schemes, but may also be observed for higher order
schemes near large spatial gradients. In some cases, the
loss of accuracy can cause numerical oscillations in a so-
lution; in other cases, numerical solutions with standard
schemes will be smooth, but inaccurate.

All of the balance laws we consider can be formulated
as an abstract dynamical system of the form

∂tu = F (u,v) (1a)

∂tv = G(u,v) +
1

ε
S(u,v) (1b)

where the u and v are vectored valued functions of space
and time. In the limit ε → 0, v will relax to a function of
u, so that u completely determines the state of the system

in the asymptotic limit. All spatial derivatives and all
external and coupled variables have been absorbed into
the abstract expressions F , G, and S.

To leading order, asymptotic expansion of v in powers
of ε gives S(u,v) = 0, which we assume can solved to
express v as a unique function of u:

v = φ(0)(u) . (2)

Thus, to the leading order, v is given by (2), where u

satisfies
∂tu = F (u, φ(0)(u)) . (3)

The first order correction to (2) is

v = φ(0)(u) + εφ(1)(u) . (4)

where u now satisfies

∂tu =F (u, φ(0)(u) + εφ(1)(u)) ,

=F (u, φ(0)(u))

+ εFv(u, φ(0)(u))φ(1)(u) + O(ε2) , (5a)

and

φ(1)(u) = [Sv(u, φ(u))]−1

(

−φ(0)
u

(u)F (u, φ(0)(u)) + G(u, φ(0)(u)
)

. (6)

In analogy with the kinetic theory of dilute gases, the
leading order expansion of v (2) is called the equilib-
rium or Euler limit and the first order correction (5a)
is called the diffusive or Navier-Stokes limit. In this
abstract formulation, our goal is to find a consistent, sta-
ble discretization for (1) which in the limit ε → 0 yields
consistent, stable discretization for (3) and/or (5a) while
maintaining the same order of accuracy.

Our current research is focused on operator splitting
techniques for solving (1) in these cases. These tech-
niques address the dynamics of S separately from F and
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G. One approach is to break the original system into two
component systems:

∂tu = 0 , ∂tu = F (u,v) ,

∂tv =
1

ε
S(u,v) , ∂tv = G(u,v) ,

(7)

which are then discretized separately. Solving the first
component implicitly is the numerical analog of project-
ing v onto its equilibrium value, φ(0)(u). Variations of
this splitting have been introduced to ensure that each
component is itself a well-posed system [JPT-1998,JPT-
2000].

Another approach [JL-1996,NP-2000] is to rewrite (1)
in the form

∂tu = λF (1)(u,v) + (1 − λ)F (2)(u,v) , (8a)

∂tv = λG(1)(u,v) + (1 − λ)G(2)(u,v) +
1

ε
S(u,v) .

(8b)

Here the parameter λ ∈ [0, 1] is a continuous, monotonic
function of ε such that λ|ε≥1 = 1 and λ|ε=0 = 0. The
terms F (1),F (2) and G(1),G(2) are actually exact copies of
F and G, respectively; however, they take different dis-
cretizations. The discretization of F (1) and G(1) is suited
toward the full system (1) while the discretization of F (2)

and G(2) is suited to the asymptotic limits equations (3)
and (5a). Neither discretization works well for all values
of ε; the idea is that a convex combination of them will.

New techniques are now in development which combine
the two approaches described above. Roughly speaking,
we use the splitting (7) to identify good choices of λ, F (1),
F (2), G(1), and G(2) in (8).

2 Diffusive Relaxation

Let us consider examples of diffusive relaxation, when
F (u, φ(u)) = 0. In such cases, the diffusive correction
φ(1)(u) is necessary to obtain nontrivial dynamics in the
asymptotic limit (see (5a)). Because the of φ(1)(u) occur
over a longer time scale, we let t 7→ εt. With respect
to this longer time scale, the waves speed of the original
hyperbolic system (1) are O(ε−1). For explicit shock-
capturing schemes, stability requires a time step of size
O(ε−1h), which is very restrictive for ε � 1. More-
over, for problems with shocks or strong discontinuities,
implicit schemes are not a sensible alternative.

Below we present several examples, each in non-
dimensional form. Thus many physical constants have
been absorbed. In all cases, the parameter ε is the ratio
of the mean free path of a particle to the characteristic
length of the spatial domain. It should be noted due
to the longer time scale, the stiff terms in these exam-
ples carry an additional factor of ε−1 and the diffusive
corrections actually appear in the leading order balance.

2.1 Hyperbolic Heat Equation

The simplest example of diffusive relaxation is the linear
hyperbolic heat equation in one dimension:

∂tρ + ∂xm = 0 , (9)

∂tm +
1

ε2
∂xρ = −

1

ε2
m . (10)

Here ρ is a concentration of particles and m is the bulk
momentum of those particles. In the limit ε → 0, m =
−∂xρ and the evolution of ρ is given by the heat equation

∂tρ = ∂2
xρ . (11)

However, when ε < h, standard schemes give numerical
results that show excessive numerical dissipation. Opera-
tor splitting techniques can be used to improve results in
such cases (Figure 1) without sacrificing accuracy in the
transport regimes, when ε is no longer small , (Figure 1).
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Figure 1: Comparison of standard and mimetic methods for the hyper-
bolic heat equation in the diffusive regime. ‘Exact’ solution is computed
with 5000 points. Mimetic scheme uses h = 0.02 and ∆t = 0.004. Up-
wind scheme uses h = 0.01 and ∆t = 4.0 × 10−7. Both schemes are
second order in space and time.

2.2 Radiation Transport

Our motivating application for studying hyperbolic bal-
ance laws is radiation transport. In this example photons
interact with a static material that absorbs and re-emits
photons. In a kinetic theory, these photons are described
by a distribution in phase space with coordinates of posi-
tion x, angle Ω, and frequency ν. When computational
resources are limited, this description is often simplified
by tracking only a finite number of angular moments of
the phase space distribution.

One well-known set of moment equations are the Pn

equations. For a slab-symmtric material with mono-
chromatic frequency spectrum, these equations can be
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Figure 2: Comparison of standard and mimetic methods for the hyper-
bolic heat equation in the transport regime. ‘Exact’ solution is com-
puted with 5000 points. Both schemes use h = 0.02 and ∆t = 0.004.
Both schemes are second order in space and time.

expressed in one spatial dimension in the following non-
dimensional form:

∂tT = −
σ

ε2
(ρ0 − T 4) , (12)

∂tρ +

(

A +
1

ε2
B

)

∂xρ = −
σ

ε2
(ρ − r) . (13)

Here ρ = (ρ0, . . . , ρn)T is a vector of angular moments, σ

is the scaled cross-section (inverse of mean free path) of
the ambient material, T is the material temperature, and
r is a vector whose only non-zero component is r0 = T 4.
The matrices A and B are given by

Aij =
i + 1

2i + 1
δi,j−1 and Bij =

i

2i + 1
δi,j+1 , (14)

and the matrix M = A+ε−2B is hyperbolic for all values
positive values of ε. In the limit ε → 0,

ρi = −
i

2i + 1
∂xρi−1 , 1 ≤ i ≤ n (15)

and ρ0 = T 4, where T satisfies

∂t(T + T 4) = ∂x

(σ0

3
∂xρ0

)

. (16)

For materials with constant cross-section, we have com-
puted solutions of these equations which accurately cap-
ture the behavior of (16) in the diffusive limit while cir-
cumventing the restrictive hyperbolic time step (Figure
3). These calculations use new techniques with better
properties than previous methods. In particular, they al-
low for a larger time step, avoid black-red discretizations
of the diffusive operator, and are able to handle systems
with more than two equations. Work continues for more
realistic materials with non-constant cross-sections and
without slab symmetry.
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Figure 3: Marshak wave computed with P7 system in the diffusive

regime, ε = 1.0× 10−4. Mimetic scheme uses h = 0.02 and ∆t = 0.002.
Upwind scheme uses h = 0.02 and ∆t = 4.0 × 10−7. Both schemes
are formally first order in space and time. Solution of (16) is computed

using a standard explicit scheme for diffusion with h = 2.0 × 10−4 and
∆t = 3.2 × 10−9

.

2.3 Electron Transport

Our final example is a nonlinear hydrodynamic model of
a slab symmetric n+-n-n+ semiconductor diode. In non-
dimensional form, it is given by

∂tρ + ∂xf(ρ) − l(ρ)∂xΦ = r(ρ) (17)

where

ρ =





n

nu
nu2

2 + 1
ε2

3nθ
2



 , l(ρ) =





0
1
ε2 n
1
ε2 nu



 , (18)

f(ρ) =





(nu)
nu2 + 1

ε2 nθ + σ
nu3

2 + 1
ε2

5nuθ
2 + σu + 1

ε2 q



 (19)

r(ρ) =







0
− 1

ε2

1
τp

nu

− 1
ε2

1
τw

(

nu2

2 + 1
ε2

3n(θ−1)
2

)






(20)

Here n is electron concentration, nu is the current density,
θ is the electron temperature density, σ is the viscous
stress, q is the heat flux density, and Φ is an electric
potential that satisfies a Poisson equation which depends
on n. The quantities τp and τw are (scaled) relaxation
times. In the limit ε → 0, θ = 1 and u = −τp(∂xn −
n∂xΦ), where n solves the drift-diffusion equation

∂tn = ∂x(τp(∂xn − n∂xΦ)) (21)

and Φ solves the same Poisson equation. Operator split-
ting techniques based on the balance in (17) that yields
(21) improve results even for devices that are not operat-
ing in the diffusion regime [H-2007]. Such is the case
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in Figure 4, where results are computed using a vari-
ation of the splitting given in (7). Even though the
device behavior is not accurately described by (21), the
splitting method can be used to significantly reduce cur-
rent oscillations at material junctions that are common in
standard hyperbolic schemes without degrading accuracy
elsewhere.
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Figure 4: n+-n-n+ diode, ε = 2 × 10−2. Both mimetic scheme (red
circles) and standard scheme (solid blue) are based on central-upwind
discretizations. Both discretizations are second order in space and first
order in time. Each scheme uses 200 mesh points and time step is
approximately same for both, ∆t ∼ 1.0 × 10−5. The mimetic scheme
improves current oscillations in the current profile (bottom right) of the
device at material junctions x = 0.1 and x = 0.5.
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